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Abstract

In this paper, we present DEWP, a router-based
system designed to automatically detect and quar-
antine Internet worm propagation. DEWP detects
worm probing traffic by matching destination port
numbers between incoming and outgoing connec-
tions. This approach does not require knowledge
of worm packet contents or profiles of normal traf-
fic conditions; it can automatically detect and sup-
press worms due to their unusual traffic patterns.
We describe how DEWP works and evaluate its per-
formance with simulations. We study the speed of
detection and the effectiveness of vulnerable host
protection relative to factors including worm scan-
ning techniques, DEWP deployment coverage and
detection intervals. We also investigate false detec-
tions with network trace playback. We show that
DEWP detects worm propagation within about 4 sec-
onds. By blocking worm probing traffic automati-
cally, DEWP can protect more than 99% hosts from
random-scanning worms.

1 Introduction

Since the widespread outbreak of the Code-Red
worm in July 2001 [1, 2] worm intrusion has become
an increasingly severe threat to the Internet. Code-
Red II [3], Nimda [4], Slammer [5], and SoBig [6]
worms have all led to considerable cost to our soci-
ety [7, 8]. Prior work [7, 9] has suggested that an
automatic worm detection and containment system
is important to protect the Internet from worm at-
tacks. We identify three essential requirements for
such a system.

First, this system must detect worm propagation
at a very early stage to suppress the worm before
it gets out of control [7, 8, 9]. For a router-based

∗Xuan Chen and John Heidemann are with University of
Southern California, Information Sciences Institute. This ma-
terial is based upon work supported by DARPA via the Space
and Naval Warfare Systems Center San Diego under Contract
No. N66001-00-C-8066 (“SAMAN”), and by the CONSER
project supported by NSF.

detection system, it needs to monitor and react to
worm traffic within a small time interval (in seconds)
in order to quarantine worm propagation quickly.
Signature-based intrusion detection systems (IDS)
can not respond to these 0-day attacks at this speed
due to the time-consuming worm packet content anal-
ysis. Anomaly-based IDS improves detection speed
by monitoring traffic changes but usually have high
false alarm rate. In this work, we believe that routers
should apply simple but essential worm detection
techniques for fast reaction. These techniques should
capture key characteristics of worm traffic but are not
computational consuming.

Second, a worm defense system needs to create
worm signatures without human interference in order
to react and quarantine worm propagation rapidly. A
signature identifies common characteristics of a spe-
cific worm suitable for detection and suppression. For
example, it could be the destination port number in
worm packet headers, or substrings of worm packet
payload. Although signatures based on packet data
contents can unambiguously detect a worm, it is chal-
lenging for an worm detection system to generate
such signatures automatically because of the large
computational overhead. On the other hand, we will
show that simple signatures based on destination port
numbers can effectively detect and contain worm traf-
fic.

Third, it is important to reduce the false alarm rate
of worm detection because false positives potentially
lead to denial-of-service to legitimate traffic. There-
fore, we need to carefully consider the trade-off be-
tween fast detection and low false-alarm rate when
designing an automatic worm detection and quaran-
tine system.

In this paper, we present a router-based worm de-
tection and containment system called DEWP (De-
tector for Early Worm Propagation). As observed
below, DEWP detects worm intrusions, creates worm
signatures, and contains worm propagation automat-
ically, without human interference. We believe it will
be especially important against worms that propa-
gate rapidly [9], such as the Slammer worm.
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This work has three major contributions. First,
DEWP applies a novel worm detection algorithm by
matching destination port numbers between incom-
ing and outgoing connections. This idea is from the
following two observations on worm traffic. First,
a worm usually exploits particular security vulner-
ability corresponding to specific network port num-
bers. Second, the nature of worms is that an infected
host will probe other vulnerable hosts exploiting the
same vulnerability. Therefore, routers seeing unusu-
ally high levels of bi-directional probing traffic with
the same destination port number can infer a new
worm has arisen. In addition, since matching des-
tination port numbers consumes low computational
power, DEWP is more applicable to real networks
than systems based on packet content analysis such
as the Early Bird System [10].

Second, we evaluate DEWP performance by sim-
ulating an outbreak of the Slammer worm, which
is known for the extremely fast spreading (infected
about a total of 75,000 hosts in about 15 minutes).
Our results show that DEWP detects worm propa-
gation in about 4 seconds. With automatic desti-
nation port discovery and packet blocking, DEWP
protects most hosts from infection: less than 1%
hosts are compromised by random-scanning worm,
and about 9% hosts are infected by local-scannning
worm. We further investigate several important fac-
tors that affect DEWP performance including worm
probing techniques, deployment coverage, and detec-
tion intervals. We also study issues on false detections
with network trace playback.

The final contribution is that we introduce a new
hybrid simulation model of worm propagation. This
model allows detailed packet-level simulations within
one particular network while representing the rest In-
ternet analytically. We present the detailed descrip-
tion of our model in Section 5.

2 Related Work

In this section, we first briefly describe techniques
to detect worm attacks. We also review different ap-
proaches to quarantine worm propagation.

Intrusion detection systems (IDS) are deployed to
discover DDoS attacks and worm intrusions. There
are two different kinds of IDS, namely signature- and
anomaly-based. Signature-based IDS [11, 12] cap-
ture worm attacks based on pre-compiled signatures
stored in database. Although they identify threats
accurately, signature-based IDS have little effect on
unknown worms. On the other hand, anomaly-based
IDS [13] detect new threats by observing unusual traf-
fic changes, that is the difference between current

traffic measurement and its normal condition (usually
in a profile). Since it is difficult to create a “proper”
profile to cover all representative aspects of normal
traffic condition, anomaly-based IDS have high false
alarm rate.

DEWP does not need signatures with worm packet
contents or traffic profiles. By matching destina-
tion port numbers between incoming and outgoing
connections, it automatically detects worm intrusion
within seconds. DEWP also has lower false alarm
rate since it captures common characteristics of worm
traffic directly.

Early Bird System (EBS) [10] is proposed to au-
tomatically detect worm propagation. Similar to our
work, EBS also discovers worm by observing com-
mon patterns in network traffic. Unlike the simple
technique of destination port matching, EBS needs
per-packet content analysis and complicated hash-
ing function to identify suspicious worm traffic ag-
gregates. Therefore, its applicability to real networks
is questionable.

Honey-pots [14, 15] and its variations (through ag-
gregation and virtulization) monitor un-used address
space (that is, dark space) and capture traffic inter-
action with dark space as worm intrusions. Honey-
pot is a flexible technique to detect unknown threats.
However, it only detects worm propagation when be-
ing directly probed. Also, honey-pots by themselves
could be compromised by worms.

Since worm is a threat to the Internet globally,
some proposals [9] call for a nation-wide Internet
worm control authority to coordinate worm detection
and immunization efforts. Other intrusion detection
system [16] also proposed to deploy sensors around
the Internet, collect traffic statistics, and send them
to a data processing center. We agree that global co-
ordination is necessary to protect the Internet from
worm intrusions. However, there are some difficulties
for these proposals to realize in near future, such as
resource constraint and administrative issues. So, we
take another approach of designing a distributed sys-
tem that detects worm probing traffic through local
traffic observations.

NetBait [17] is a distributed system that provides
detailed information about network intrusions. It
collects data from geographically located machines,
which use traditional intrusion detection systems
(such as Snort [11]) to discover worm attacks. The
goal of NetBait is to provide accurate information
to identify infected hosts and expedite the process
of worm containment and cleanup. It is complemen-
tary to DEWP which aims at fast detection of worm
propagation.

Current schemes to contain worm propagation is by
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Figure 1: DEWP architecture.

packet filtering or address blocking [7, 8]. Researchers
at Silicon Defense propose to partition enterprise net-
work into small cells, and quarantine worm propaga-
tion coordinately [18]. In this work, DEWP applies
packet filtering to suppress the spread of worms.

“Virus throttle” [19] is a scheme to slow down
worm propagation by limiting the number of outgoing
connections that one host can initiate simultaneously.
To be effective, we need to modify current network
implementation on most end-hosts.

3 Worm Detection and Containment

Internet worms can spread very rapidly [7, 9, 20].
For example, Code-Red II worm totally infected
about 360,000 computers in 14 hours with a peak
aggregate infection rate of 2,000 hosts per minute.
The latest MyDoom worm compromised about 20,000
hosts in total within 2 hours after it was first dis-
covered. In order to detect worm traffic promptly,
routers need to automatically examine traffic changes
and frequently conduct worm detections. As a result,
when designing worm detection algorithm for routers,
we need to choose simple but essential techniques so
that worm detection does not interfere with routers’
normal operations.

Figure 1 shows the two components that make up
DEWP: the worm detector and packet filter. DEWP
detects worm intrusions with two steps: destination
port matching and destination address counting. Af-
ter it discovers a worm attack and the corresponding
destination port number, DEWP deploys packet fil-
ter to block worm probing traffic. We present detailed
design considerations in following sections.

3.1 Detecting Worm Propagation with
Destination Port Matching

DEWP applies a two-step detection algorithm,
first port-matching, then address-counting. It first
identifies suspicious traffic by matching destination
port numbers between incoming and outgoing con-
nections. This simple technique actually captures
important characteristics of worm probing traffic:
worms usually exploit a vulnerability in the same ser-
vice, and so the same destination port number will
be prominent in both incoming and outgoing traffic
when a worm is spreading1. Also, since worms at-
tempt to infect as many vulnerable hosts as possible,
compromised hosts both receive and send worm prob-
ing traffic. As a result, corresponding access routers
observe probing traffic in both directions.

DEWP uses port matching as a first line of filter-
ing, since it can be done efficiently in routers, and
since it can reduce computational overhead for per-
port checking. We examine the effectiveness of port
matching in Section 6.6. While one might want to
explicitly monitor ports with source and destination
addresses (watching a particular host become infected
and then this infection spreading to another), we do
not take this approach because a worm can often
spoof its source address when spreading. So, this
check is less robust.

Port-matching alone may identify some legitimate
traffic as potential worm traffic. For example, an ac-
cess router of one ISP network may observe normal
web requests toward both inside and outside servers.
So, port matching will capture web traffic as suspi-
cious worm probings. To distinguish legitimate traffic
from worm probings and avoid false positives, DEWP
introduces a second step address counting. It counts
distinct destination addresses of outgoing connections
to suspicious ports (N). DEWP identifies worm traf-
fic when observing large increase in N . The underline
assumption is that worms probe many more unique
addresses than normal traffic [19], and that worms
result in a rapid increase in number of unique ad-
dresses seen. Through address-counting, DEWP is
also able to capture worms that utilize popular net-
work services such as sendmail (MyDoom and SoBig)
and Web (Code-Red).

3.2 Containing Worm Propagation

There are two approaches to quarantine worm
propagation: address blacklisting and traffic filter-
ing. DEWP uses traffic filtering, asking routers to

1Even for polymorphic worms that attack multiple vulner-
abilities, the ports used by each vulnerability will appear in
traffic.
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Figure 2: Worm containment in ISP I.

drop packets with the automatically discovered des-
tination port. We have chosen this alternative be-
cause it protects more vulnerable hosts than address
blacklisting given the same worm attack and reaction
time [7].

There are two aspects for worm containment: pro-
tecting internal hosts from both internal and external
threats, and notifying other networks about the on-
going attack. Theoretically, it is always beneficial to
deploy DEWP to additional ISPs if some other ISPs
have already done so. This is because that multiple
systems can coordinate worm detection, and share
the worm destination port number discovered. How-
ever, there are some difficulties in reality that pro-
hibit such coordination including administrative is-
sues and mutual trustiness among ISPs. So, we focus
on deploying DEWP within one ISP in this work.

In order to show the detailed procedure of worm
containment in one ISP network, we present an exam-
ple below. We assume that routers can communicate
with each other using schemes such as multicast. For
an ISP I with DEWP deployed (shown in Figure 2),
suppose router R detects the worm. It first deploys
packet filter locally. R may also be able to locate
infected hosts and block their network connections
individually.

Then, R notifies access routers of ISP I (labeled
as 1 in Figure 2) so that internal hosts are protected
from outside probes. Also, outside hosts are no longer
scanned by infected hosts in I. Finally, routers (in-
cluding access routers and R) that aware of worm
propagation further alert their neighbors (labeled as
2). This process continues recursively within I until
all DEWP-aware routers deploy traffic filter.

To protect hosts that are connected through other

ISPs, access routers of I need to notify its peers about
the worm attack (labeled as 3). Upon receiving these
notifications, routers in other ISPs repeat the three
steps described above.

In this work, we focus on early detection and fast
containment of worm propagation Since DEWP quar-
antines worm propagation with port-based packet fil-
tering, it may block legitimate traffic to the discov-
ered port. However, we believe that this effect only
exists when a worm is initially detected. Once we
apply more sophisticated algorithms to further iden-
tify worms such as finding signatures based on worm
packet contents, we should be able to resume service
for legitimate traffic [8].

4 System Design

DEWP keeps track of both incoming and outgoing
connections. It maintains one list for each direction
(port-list) to record the number of connections to dif-
ferent destination ports. DEWP also keeps a timer
for each entry in port-lists. If one port has not been
accessed for certain time interval, DEWP resets the
corresponding list entry. By this means, we reduce
false positives.

DEWP matches non-zero entries in both port-
lists, and further monitors the outgoing destination
addresses of those connections. Every T seconds,
DEWP checks the number of unique addresses ob-
served within last time interval. DEWP detects worm
traffic with the following condition:

N > N × (1 + δ) (1)

N is the number of unique addresses observed and N
is its long-term average. For simplicity, we use the
Exponentially Weighted Moving Average (EWMA)
to compute N : N = αN + (1 − α)N .

In the above condition, δ reflects system’s sensi-
tivity to changes. Small δ expedites worm detec-
tion with a potentially higher false alarm rate. On
the other hand, large δ increases detection confidence
with a cost of reduced sensitivity. Based on our expe-
rience, we choose δ = 1 and α = 0.125 in our simula-
tions. We investigate the effect of detection interval
T and sensitivity parameter δ on DEWP performance
in Section 6.4 and 6.6.

For worm containment, we do not consider the ac-
tual procedure to notify neighbor routers in our cur-
rent work. Hence, we ignore the notification delay
among routers. We will investigate this issue in our
future work.

4



traffic
probing

the rest

the protected network

unprotected
Internet

Figure 3: The worm propagation model.

5 Modeling Worm Propagation

In this work, we consider the scenario that one ISP
network deploys DEWP to protect its hosts. This
imposes two requirements for the worm propagation
model in simulations. First, it should allow detailed
packet-level simulations to evaluate DEWP perfor-
mance in the protected network. Second, it also needs
to reflect worm spreading throughout the whole In-
ternet.

However, due to CPU and memory constraints, it
is usually impossible to simulate millions of routers
and hosts with packet-level details. Fortunately, since
we are interested in deploying DEWP to a particular
network, there is no need to model the whole Internet
with such details. So, we apply an analytical model
to represent the rest Internet without DEWP protec-
tion. Compared to the protected network, we only
need to track several state variables in this abstract
world such as the number of infected hosts.

As shown in Figure 3, we integrate SIR
(susceptible-infectious-removal) model [7, 9, 20, 21].
with packet-level simulations in the protected net-
work. The interaction of these two parts is through
actual probing packet transmissions.

Our model has three major differences from prior
work [20]. First, instead of applying the analytical
model to the whole Internet, we partition the Internet
into two parts and only model the unprotected net-
work theoretically. Second, we model vulnerable and
infected hosts in both parts of the Internet. Third,
instead of using analytical model to compute traffic
metrics for individual routers in detailed simulations,
the protected network in our model interacts with the
rest Internet through actual probing traffic.

5.1 Formal Representation of the Model

Formally, we present our worm propagation model
with following equations. We describe model param-
eters in Table 1.

dSU/dt = −βIUSU/SU (0) − Px, (2)

Parameter Meaning
SU , IU , RU number of vulnerable, infected,

and removed hosts in the rest
unprotected Internet

β infection parameter
γ removal parameter

NU , NP total number of hosts and the
θU , θP percentage of vulnerable hosts in

both networks
pr, px number of probing packets received,

sent by the protected network within
one time unit

Px number of effective probing packets
sent from the protected network
within one time unit

C worm scanning rate

Table 1: Parameters used in our worm propagation

model.

dIU/dt = βIUSU/SU (0) − γIU + Px, (3)

dRU/dt = −γIU , (4)

Px = px × SU/NU , (5)

pr = CIUND/N, (6)

We also have the following equations for the rest
Internet:

SU + IU + RU = SU (0)

SU (0) = NU × θU

N = 232
− 1

SU (0) is the number of hosts in the rest Internet that
are initially vulnerable. N is the address space of the
Internet, which is used by worms to choose victims.

There is a rough relationship between worm scan
rate (C) and infection parameter (β):

β = CSU (0)/N

Equations (2, 3, 4) come directly from the math-
ematic representation of discrete SIR model. It up-
dates states (IU , SU , RU , and pr, px, Px) at each
time unit.

We augment the SIR model by including two new
variables px and pr to represent probing traffic be-
tween the two networks. As shown in equations 5
and 6, the effective probing Px is proportional to px

and the percentage of vulnerable hosts in the unpro-
tected Internet. Further, pr represents the portion of
aggregate probing traffic sent to the protected net-
work. We describe probing traffic generation in Sec-
tion 5.2.
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We can use the mathematical expression of worm
propagation model to estimate some important prop-
erties. For example, in Appendix A, we compute the
time when the protected network receives the first
probing packet (probing time), and when the first
host in the protected network is compromised (infec-
tion time). We verify our simulation results with this
analysis.

5.2 Modeling the Interaction between
the Protected network and the Rest
Internet

One novel aspect of our worm propagation model is
that the two networks interact through real probing
traffic. With a certain scan rate C, an infected host
selects a target to send out probing packets. If the
target is vulnerable, it is compromised and starts to
probe other hosts. Probing packets have no effect on
invulnerable or infected hosts.

Worms have different options to send probing pack-
ets. For example, Code Red and Nimda first set
up TCP connections with target hosts; while Slam-
mer worm sends probing packets directly via UDP.
With TCP connections, worms can send out large
payload (for example, 50KB in Nimda’s case). But,
the scan rate is limited by the end-to-end latency
to victims, and therefore can not be very high. On
the other hand, UDP-based worms usually have ex-
tremely large scan rate, but only one small probing
packet (400 bytes in Slammer’s case). Their probing
is not constrained by latency, but limited by available
network bandwidth. As more probing traffic pumped
into networks, it not only affects cross traffic, but also
interferes among themselves.

We study two probing strategies in this work: ran-
dom and local-preferred scanning. Worms (such as
Code Red and Slammer) that apply random scan-
ning choose an IP address from the whole Internet ad-
dress space randomly. This address may not even be
used. Other worms (like Nimda) prefer to choose lo-
cal neighbors. In this work, we model local-preference
with the probability that an infected host probes its
neighbors in the protected network.

We validate the interaction between both net-
works through simulations (detailed methodology
and model parameters in Section 6.1). In Figure 4,
we show that the change of infection percentage in
both networks follow the same trend. If we interpret
the infection percentage as the probability that a vul-
nerable host will be compromised at time T , Figure 4
can be looked as the corresponding cumulative distri-
bution function (CDF), that is P (t < T ). So, we can
apply Kolmogorov-Smirnov goodness of fit test to for-
mally determine if these two CDFs are significantly
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Parameter Value
NA 200M
θA 0.037%
SA0 74,250
β 0.069

ND 2550
θD 30%
C 4000 / second

Table 2: Parameters used to model Slammer worm.

different.

Following the methodology described in prior
work [22], we first compute the maximum divergence
of these two curves (D value) and compare it to the
critical value at 0.05 level significance ( c

√

n
, c = 0.874

and n = 256). Since the D value (0.0515) is smaller
than the critical value (0.054625), we accept the null
hypothesis that the two curves are not significantly
different from each other.

6 System Evaluation

We implement DEWP in the network simulator
(ns-2.27) [23] and evaluate its performance through
simulations. In this work, we only consider scenarios
of deploying DEWP to one ISP network.

6.1 Methodology

Since we are particularly interested in the detection
and quarantine of fast spreading worms, we evaluate
DEWP performance with a simulated outbreak of the
Slammer worm.

We choose model parameters (summarized in Ta-
ble 2) based on previous measurement study on the
Slammer worm [5]. For simplicity, we do not consider
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removal function (Function 4, representing hosts that
die and are removed from service, or become patched
and are “cured”) in our current work. To investigate
the effect of different worm scanning techniques on
DEWP performance, we consider both random and
local probings.

For the protected network, we randomly select and
mark 30% of end hosts as vulnerable (θD). Intu-
itively, the higher θD, the more likely that hosts in
the protected network are compromised.

In order to easily study the effect of deployment
on DEWP performance, we choose a topology of a
6-nary tree with 50 routers (Figure 5). All con-
nections have 100Mbps bandwidth and 50ms prop-
agation delay. Each router connects 50 hosts with
100Mbps links (25ms propagation delay). We in-
vestigate DEWP performance in a random-generated
topology in Section 6.5.

We deploy DEWP to routers in the protected net-
work and quantify its performance with two met-
rics: detection delay and infection percentage. We
define detection delay as the time interval from the
first probing packet enters the protected network till
DEWP detects worm propagation. The infection per-
centage represents the portion of vulnerable hosts in
the protected network that are compromised.

The coverage of DEWP-aware routers in the pro-
tected network (deployment) and the DEWP detec-
tion interval both affect performance. We vary these
parameters to investigate their effects.

Ideally, DEWP will be deployed on all routers.
However, in practice, we may only be able to de-
ploy DEWP to some routers due to the difficulty of
adding detection algorithm in existing router software
and controlling router’s access policy. In Section 6.2
and 6.3, we incrementally deploy DEWP to routers
on different layers (from 0 to 3 in Figure 5) and inves-
tigate how detection performance changes. We fur-
ther study DEWP performance with different detec-
tion intervals in Section 6.4. We also investigate false
alarms of DEWP detection algorithm in Section 6.6,

In all scenarios, we run simulations for 50 times
and calculate statistics of detection delay and infec-
tion percentage in the protected network. Graphs
that show mean values also indicate 90% confidence
intervals; graphs that show medians instead depict
25% and 75% quartiles.

6.2 Effectiveness of Worm Detection
and Quarantine

We first consider a random-scanning worm. In this
section, we present numbers of infected hosts instead
of showing the small infection percentages (less than
1%). Our simulation results show that DEWP de-
tects worm traffic in 4.8 seconds when fully deployed
with a 1 second detection interval. The median num-
ber of infected hosts is 1, which is the minimal re-
quirement for DEWP to detect worm probing traffic.
Therefore, DEWP quickly detects the worm attack
and effectively protects almost all vulnerable hosts
from infection.

We further investigate the effect of deployment
on DEWP performance. As shown in Figure 6(a),
DEWP always detects worm probing traffic in 4–5
seconds when deployed to different layers. So, DEWP
detection delay is not sensitive to deployment in the
scenario of random-scanning worms.

We also observe that the median number of in-
fected hosts remains as 1 when DEWP deployment
covers different layers (Figure 6(b)). This is be-
cause that infected hosts in the protected network al-
most always probe outside networks rather than their
neighbors: the possibility that an infected host in the
protected network probes its neighbors is very small
(about 2 out of 10 million probes). So, the number
of infected hosts in the protected network is primar-
ily determined by the number of probing packets re-
ceived from outside. Therefore, DEWP is still able
to protect almost all hosts from infection even when
only deployed on the access router.

Based on our results, we conclude that deploy-
ment does not have significant effect on DEWP per-
formance to detect and quarantine random-scanning
worms. Further, it is sufficient to deploy DEWP on
the access router to protect vulnerable hosts from
random-scanning worms.

6.3 Effect of Worm Scanning Techniques

Worms could apply other scanning techniques. For
example, the Nimda worm chooses an address with
the same first two octets with a probability of 50%
and an address with the same first octet with a prob-
ability of 25%. Only 25% of the time, it picks a ran-
dom address. As shown below, local-scanning worms
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Figure 6: Detect and quarantine random-scanning worm with different layers of deployment.

spread rapidly within the protected network after the
first host is compromised. This property imposes
great challenge to worm detection and containment.
In this section, we investigate its effect on DEWP per-
formance by simulating a local-scanning worm. With
other parameters unchanged, we configure the proba-
bility that an infected host within the protected net-
work probes its neighbors as 50%.

With full deployment and 1 second detection in-
terval, we find that DEWP detects worm probing
traffic in 3.87 seconds. But, almost all vulnerable
hosts in the protected network are compromised be-
fore DEWP blocks worm traffic. Also, deployment
does not have significant impact on either detection
delay or infection percentage. Therefore, with 1 sec-
ond detection interval, even though DEWP quickly
detects worm traffic, it can not effectively quarantine
local-scanning worm.

To improve DEWP’s effectiveness in worm con-
tainment, we reduce the detection interval to 0.0625
second. In Section 6.4, we investigate how differ-
ent detection intervals affect DEWP performance
in details; however here we observe that this more
frequent detection reduces vulnerability to local-
scanning worms.

Our simulation results show that DEWP detects
worm probing traffic in 4.63 seconds with full deploy-
ment. We also find that deployment does not con-
siderably affect DEWP detection delay. Given the
similar detection delays observed in all scenarios, we
conclude that DEWP is able to quickly detect worm
attacks regardless probing techniques.

On the other hand, even with full deployment,
we still observe about 9% vulnerable hosts compro-
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mised in the protected network. The infection per-
centage increases as we reduce the number of layers
with DEWP deployed. As an extreme case, when we
only deploy DEWP on the access router, all vulnera-
ble hosts in the protected network are compromised
within 10 seconds. Given the difficulty to effectively
quarantine local-scanning worms, we conclude that a
very small detection interval and wide deployment is
critical to protect vulnerable hosts.

6.4 Effect of Detection Intervals

DEWP conducts address-counting with an inter-
val of T seconds. Different detection intervals affects
DEWP performance such as detection delay and in-
fection percentage. We investigate its effect below.
In this section, we fully deploy DEWP on all routers
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Figure 7: Detect and quarantine local-scanning worm with different layers of deployment.

in the protected network.

We first consider a random-scanning worm. As
shown in Figures 8 and 9, both the detection delay
and the number of infected hosts increases with de-
tection intervals. Therefore, we believe that an auto-
matic system should detect worm traffic with small
intervals.

For local-scanning worms, small detection interval
is even more critical. As shown in Figure 10, although
we do not observe significant difference in detec-
tion delay (always about 4–5 seconds), the infection
percentage increases dramatically at larger intervals:
from 9% (T = 0.0625second) to 100% (T = 1second).
So, we conclude that an automatic system needs to
react to worm traffic within small time intervals in or-
der to quickly detect and effectively quarantine worm
propagation.

6.5 Effect of the Protected Network
Topology

So far, we have investigated DEWP’s effectiveness
with a simple tree topology in the protected network.
Although this setup has simplified our analysis, it
does not reflect real network connections. To evalu-
ate DEWP performance in a more realistic environ-
ment, we replace the tree topology with a randomly
generated one (using GT-ITM [24, 25]) as shown in
Figure 11. Link properties and the access connection
of the protected network remain unchanged. We also
fully deploy DEWP to all routers.

We first investigate scenarios with random-
scanning worms. Our results show that DEWP de-
tects worm probing traffic within about 4 seconds

34

33

32

31

30

29

28

27

9

26 8

25
7

24

6

23

5

22

4

21

3

20

19

2

18

1

17
0

16

15

14

13

12

11

10

49

48

47

46

45

44

43

42

41 40

39

38

37

36

35

the rest Internet
Access link to

Figure 11: Randomly generated topology for the pro-

tected network.

with the detection interval of 1 second. The median
number of infected hosts in the protected network is
1. So, we conclude that for these topologies, DEWP is
not sensitive to the protected network topology when
facing random-scanning worms.

For local-scanning worms, the detection delay is
still about 4 seconds with detection interval as 0.0625
second. But, we observe smaller mean infection per-
centage (about 5%) than our previous results. This is
because some nodes in the random generated topol-
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Figure 8: Detection interval affects DEWP performance.

ogy has larger out-degree and deeper hierarchies,
hence some probing packets are dropped due to con-
gestion caused by more traffic aggregation. As a re-
sult, the mean infection percentage reduces.

6.6 Understanding False Detections

False detection is a serious concern of automatic
worm detection systems. There are two kinds of false
detections: false positives, when DEWP incorrectly
identifies legitimate traffic as worms, and false nega-
tives, when DEWP fails to identify worm traffic. We
investigate both cases by playing back network trace
through DEWP algorithm.

Our trace contains two parts: background and
worm probing traffic. For background traffic, we
use three one-hour packet trace sets collected from
a 100Mbps link connecting USC/ISI to the Internet.
These traces were taken on August 21, 2002. We
choose different time (9am, 3pm, and 6pm) to reflect
variety in traffic. ISI has a B-class network providing
services mainly for computer science researchers. It
also hosts Web, FTP, sendmail servers and one b.root
DNS server.

Because we did not have traces that contain actual
worms, we generate synthetic worm traffic using our
worm propagation model and add this to our traces.
We record packet trace at the access link between the
protected network and the rest Internet.

During trace playback, we first start with back-
ground traffic. At the simulation time of 50 seconds,
we inject worm traffic.

In the experiment, we do not observe any false
positives—when both stages of DEWP are used, it

never classifies non-worm traffic as a worm. On the
other hand, DEWP does discover about 10 suspicious
destination ports including 21 (FTP), 53 (DNS), and
80 (Web).

This finding has two implications. First, address-
counting is important to reduce false positives. With-
out this procedure, DEWP will block FTP and Web
traffic due to false detections.

Second, port-matching identifies about 10 different
ports out of the total of 542 active ones observed in
our trace. So, DEWP only needs to count address to
these 10 ports. Since address-counting runs with very
small intervals (less than 1 second), port-matching
saves the computational power on routers greatly.

In the procedure of address-counting, the sensitive
parameter β in condition 1 reflects the trade-off be-
tween detection and false alarms. We study DEWP
false detections with different values of β. We ob-
serve that with β = 1, there’s no legitimate traffic be-
ing falsely detected as worm propagation. But, with
smaller β, DEWP wrongly identifies other traffic such
as Web and DNS (β = 0.5), and FTP (β = 0.25) as
worms. So, β = 1 seems to be a plausible config-
uration of DEWP detection algorithm. We need to
further verify this suggestion with traces taken at dif-
ferent networks.

Another important issue affecting false negatives is
worm scan rate C. When a worm scan at low rate,
its probing traffic has less effect on overall traffic.
So, DEWP routers have more difficulty distinguish-
ing them from normal traffic. We investigate different
scan rates from 4000 down to 500 per second. We ob-
serve that even with C = 500, worm traffic still stands
out compared to regular traffic: 728 packets per sec-
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Figure 10: Detection interval affects DEWP performance.

ond versus 34 (web traffic). So, we conclude that due
to its high spreading speed, UDP-based worm traffic
has dramatic larger packet rate than normal traffic.

On the other hand, DEWP is not able to detect
worms with scanning rate lower than C = 25 because
the packet rate of worm traffic is low enough to es-
cape from DEWP detection algorithm. So, low-speed
worm is more difficult to detect by only observing
traffic changes.

In future work we hope to consider TCP-based
worms where scan rate is constrained by the end-to-
end latency between infected host and victims.

An important area of future work will be to exam-
ine traces that include real worm propagation mixed
with live Internet traffic. Unfortunately we were un-
able to find such a trace for this study. However, we
believe that the methodology described above will be
applicable to evaluations with real network traces.
We also hope to prototype and deploy DEWP to a
real network environment to further investigate the
issues of false detection.

7 Future Work

As a future direction, we want to extend our worm
propagation model for more complicated scenarios,
such as multi-homing, and asymmetric routing. We
also want to consider removal function in our future
work.

Currently, we only investigate worms that send
probing traffic via UDP. We will extend our work
to TCP-based worms in future. Another interesting
direction is to study the interference among worm
traffic.

Finally, in order to evaluate DEWP in real net-
works, implementation is one of our future directions.

8 Conclusion

In this work, we propose DEWP to detect and
quarantine the propagation of Internet worms at an
early stage. DEWP identifies worm traffic through
port-matching and address-counting. We evaluate
DEWP performance with simulations. We find that
DEWP detects worm attack within 4–5 seconds. By
automatically blocking worm traffic, it protects most
vulnerable hosts from random-scanning worms. We
also study the effect of deployment and detection in-
tervals on DEWP performance. We believe that an
automatic worm detection and containment system
should be widely deployed and have very small detec-
tion intervals. We further investigate issues of false
detection through traffic trace playback.
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A Expected Time of Probing and

Infection

Using the analytical representation of our worm
propagation model (details in Section 5.1), we can
compute the time when the protected network re-
ceives the first probing packet (probing time), and the
expected time when the first vulnerable host in the
protected network is compromised (infection time).
The probing time is determined by the ratio of hosts
in both networks. The larger the protected net-
work is, the earlier it receives probing packets. Since
DEWP detects worm propagation after at least one
host infected, the difference between probing time
and the expected infection time is actually the lower
bound of the expected detection delay.

For simplicity, we do not consider removal function
(4) below. Since there’s no probing packet sent by the
protected network before its first vulnerable host is
compromised, we ignore function 5. So, we have a
simplified model below:

dSU

dt
=

−βIUSU

SU (0)
, (7)

dIU

dt
=

βIUSU

SU (0)
, (8)

pr =
CIUNP

N
, (9)

The first probing packet is sent to the protected
network when pr(t) ≥ 1. From equation 8, we have:

dIU/dt = βIUSU/SU (0)

= βIU (SU (0) − IU )/SU (0) (10)

So, in our discrete-time model, we have:

IU (t) = βIU (t − 1)(SU (0) − IU (t − 1))/SU (0)

+IU (t − 1)

= (1 + β)IU (t − 1)

−βI2

U (t − 1)/SU (0) (11)

Combining equation 9 and 11, we get:

IU (t)CNP /N ≥ 1

NP

N
C((1 + β)IU (t − 1)

−βI2

U (t − 1)/SU (0)) ≥ 1 (12)

where IU (0) = 1. Therefore, we can solve the above
inequation to get probing time. Similarly, we have
the expression for expected infection time:

NP

N
C((1 + β)IU (t − 1)

−βI2

U (t − 1)/SU (0)) ≥ 1/θP (13)

Given the configuration in our simulations (details
in Section 6.1) we find that the probing time is 93.20
seconds, and the expected infection time is 98 sec-
onds. Assuming fully deployment the expected de-
tection delay is about 4 seconds. These results are
consistent with our simulations.
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